| Up | 南中の直交座標計算 | 作成: 2020-09-28 更新: 2020-09-28 |
公転角がτのときの,緯度aの南中の座標 (x, y, z) は? 簡単のため \[ n_s = sin(n), \ \ n_c = cos(n) \\ a_s = sin(a), \ \ a_c = cos(a) \\ \tau_s = sin(\tau), \ \ \tau_c = cos(\tau) \] とおく。 さらにこの簡略記法 \[ \theta_s = sin(\theta) \\ \theta_c = cos(\theta) \] を,一般の \( \theta \) に対しても用いるとする。 南中の位置:
自転軸系経度緯度と公転軸系直交座標の変換式):
\[
(n_s) y + (- n_c) z + a_s = 0
\quad \cdots \ (2)\\
\]
\[
(1) \times n_c + (2) \times (n_s \tau_s) \ : \\
0 = ((n_c)^2 \tau_c x + (n_c)^2 \tau_s y + n_s n_c\tau_s z\\
\quad \quad + (n_s)^2 \tau_s y + (- n_c) n_s \tau_s z + n_s a_s \tau_s \\
\quad = (n_c)^2 \tau_c x + \tau_s y + n_s a_s \tau_s \\
\\ \ \\
\Longrightarrow \ \
y = \frac{ - (n_c)^2 \tau_c x - n_s a_s \tau_s }{ \tau_s }
\\ \ \\ \ \\
(1) \times n_s - (2) \times (n_c \tau_s) \ : \\
0 = n_s n_c \tau_c x + n_s n_c \tau_s y + (n_s)^2 \tau_s z \\
\quad \quad - ( n_s n_c \tau_s y - (n_c)^2 \tau_s z +n_c a_s \tau_s ) \\
\quad = n_s n_c \tau_c x + \tau_s z - n_c a_s \tau_s
\\ \ \\
\Longrightarrow \ \
z = \frac{ - n_s n_c \tau_c x + n_c a_s \tau_s }{ \tau_s } \\
\\ \ \\
\]
よって,
\[
\begin{align}
& x^2 + y^2 + z^2 = 1 \\
\Longrightarrow \ \
& x^2
+ (\frac{ - (n_c)^2 \tau_c x - n_s a_s \tau_s }{ \tau_s })^2
+ (\frac{ - n_s n_c \tau_c x + n_c a_s \tau_s }{ \tau_s })^2
= 1
\\ \ \\
\Longrightarrow \ \
& (\tau_s)^2 x^2 \\
& + ( (n_c)^2 \tau_c x )^2 + 2 ((n_c)^2 \tau_c x ) (n_s a_s \tau_s ) + ( n_s a_s \tau_s )^2 \\
& + ( n_s n_c \tau_c x )^2 - 2 ( n_s n_c \tau_c x ) ( n_c a_s \tau_s ) + ( n_c a_s \tau_s )^2 \\
& = (\tau_s)^2
\\ \ \\
\Longrightarrow \ \
& (\tau_s)^2 x^2 \\
& + (n_c)^2 (n_c)^2 ( \tau_c )^2 x^2 + 2 n_s (n_c)^2 a_s \tau_s \tau_c x + (n_s)^2 (a_s)^2 (\tau_s )^2 \\
& + (n_s)^2 (n_c)^2 (\tau_c)^2 x^2 - 2 n_s (n_c)^2 a_s \tau_s \tau_c x + (n_c)^2 (a_s)^2 (\tau_s)^2 \\
& = (\tau_s)^2
\\ \ \\
\Longrightarrow \ \
& ( (\tau_s)^2 + (n_c)^2 (n_c)^2 ( \tau_c )^2 + (n_s)^2 (n_c)^2 (\tau_c)^2 ) x^2 \\
& + 2 ( n_s (n_c)^2 a_s \tau_s \tau_c - n_s (n_c)^2 a_s \tau_s \tau_c ) x \\
& + (n_s)^2 (a_s)^2 (\tau_s )^2
+ (n_c)^2 (a_s)^2 (\tau_s)^2 - (\tau_s)^2 = 0
\\ \ \\
\Longrightarrow \ \
& ( (\tau_s)^2 + (n_c)^2 ( \tau_c )^2 ) x^2 \\
& + (a_s)^2 (\tau_s )^2 - (\tau_s)^2 = 0
\\ \ \\
\Longrightarrow \ \
& ( 1 - (\tau_c)^2 + (n_c)^2 ( \tau_c )^2 ) x^2 \\
& - ( 1 - (a_s)^2 ) (\tau_s )^2 = 0
\\ \ \\
\Longrightarrow \ \
& ( 1 - (n_s)^2 ( \tau_c )^2 ) x^2 \\
& - (a_c)^2 (\tau_s )^2 = 0
\\ \ \\
\Longrightarrow \ \
& x = \pm \frac { a_c \tau_s} {\sqrt{ 1 - (n_s)^2 ( \tau_c )^2 } }
\\ \ \\
\end{align}
\]
さらに
\[
\begin{align}
y &= - \frac{ (n_c)^2 \tau_c }{ \tau_s } x - n_s a_s \\
&= \mp \frac{ (n_c)^2 \tau_c }{ \tau_s } \frac { a_c \tau_s} {\sqrt{ 1 - (n_s)^2 ( \tau_c )^2 } } - n_s a_s \\
&= \mp \frac{ (n_c)^2 a_c \tau_c } {\sqrt{ 1 - (n_s)^2 ( \tau_c )^2 } } - n_s a_s
\\ \ \\
z &= - \frac{ n_s n_c \tau_c }{ \tau_s } x + n_c a_s \\
&= \mp \frac{ n_s n_c \tau_c }{ \tau_s } \frac { a_c \tau_s} { \sqrt{ 1 - (n_s)^2 ( \tau_c )^2 } } + n_c a_s \\
&= \mp \frac{ n_s n_c a_c \tau_c } { \sqrt{ 1 - (n_s)^2 ( \tau_c )^2 } } + n_c a_s \\
\\ \ \\
\end{align}
\]
北中
|